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Abstract
This article introduces an analysis-aware microscopy video compression method designed for

microscopy videos that are consumed by analysis algorithms rather than by the human visual sys-

tem. We define the quality of a microscopy video based on the level of preservation of analysis

results. We evaluated our method with a bead tracking analysis program. For the same error level

in the analysis result, our method can achieve 1,0003 compression on certain test microscopy vid-

eos. Compared with a previous technique that yields exactly the exact same results by analysis

algorithms, our method gives more flexibility for a user to control the quality. A modification to the

new method also provides faster compression speed.
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1 | INTRODUCTION

The emergence of high-resolution, high-throughput microscopy sys-

tems is driving explosive growth in the size of video data produced by

scientific experiments. One example of high-resolution microscopy sys-

tem is described in Cribb et al. (2015). However, growth in storage

capacity and data transmission is not keeping up. Consequently, video

data is being compressed before transmission and storage.

Various video compression techniques have been invented and

standardized in the past decades. Currently, several of the most widely

used techniques are H.264, H265, and VP9 (JVT, 2003; Mukherjee

et al., 2013; Sullivan, Ohm, Han, & Wiegand, 2012). Each of these

video compression techniques is designed to achieve acceptable com-

pression performance on a wide range of videos while maintaining

good visual quality for human observers, sometimes based on popular

video quality metrics designed to measure this such as peak signal to

noise ratio (PSNR).

A method for compressing single confocal fluorescence microscopy

images is presented in Amer and Dubois (2005). In their work, they esti-

mated signal to noise ratio (SNR) in microscopy images with the techni-

ques described in Bernas, Asem, Robinson, and Rajwa (2006) and

Nowak and Baraniuk (1999). The compression was achieved by spatial

downsampling, intensity downsampling, and wavelet compression.

The idea of evaluating the quality of a video based on analysis

algorithms can be found in Korshunov and Ooi (2011). In their article,

the video analysis routine is a set of computer vision algorithms: face

recognition, face detection, and face tracking. They used H.264 to

compress video multiple times with various quality settings to generate

a set of the compressed video. They discovered that face recognition

and face detection results are not sensitive to compression until they

reach a particularly low-quality setting. Above that, compression main-

tains similar face recognition and detection results as the original video.

Experiments have also been performed on tracking faces in a set of

compressed videos with a certain portion of frames dropped. They pro-

posed that mutual information and blackness be two computed values

that better correlate to the qualities of these analysis results that they

can be considered as metrics.

These metrics differ from those required by scientific analysis algo-

rithms (Korshunov & Ooi, 2011). An analysis algorithm may require

extremely high-level preservation of details in a certain region of the

video, far exceeding the sensitivity of the human visual system. On the

other hand, certain parts of the video that are not relevant to the anal-

ysis may be completely ignored by the algorithm but may contain noise

and irrelevant moving features that greatly reduce compressibility. This

mismatch has lead us to design new video compression methods for

microscopy videos that we call “analysis-aware microscopy video

compression.”

Our efficient analysis-aware microscopy video compression

method aims to provide the following features: (a) in data reduction

and encoding, the method should preserve the information in a
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microscopy video that is critical to analysis; (b) it should reduce infor-

mation in regions not relevant to the analysis; and (c) it should be able

to avoid compression and reconstruction artifacts that change the out-

come of analysis even in ways that would improve results compared to

the original video—analysis preformed on the compressed video should

be indistinguishable from that performed on the original.

Our earlier work described a correlation-based compression

method (Shao et al., 2015) that retained identical analysis results after

compression. In this technique, a correlation-based threshold is used to

detect the critical information (foreground) in a video. The foreground

is then refined using mathematical morphology and losslessly stored in

the compressed video. The remaining part is compressed by storing the

temporal mean of that pixel location. We evaluated our methods using

Video Spot Tracker (CISMM, 2015) to track moving beads, which

showed that our method can get at most 1003 compression without

any change to analysis results. In comparison, H.264 compression

either yielded much smaller compression ratio (lossless) or changed the

analysis results (lossy).

In this article, we extend this method to enable further increase in

compressibility while still maintaining results that are statistically indis-

tinguishable from samples of the original video. We observe that

microscopy video analysis results are already altered by noise intro-

duced in all stages of the microscopy video acquisition pipeline. The

new method does not force the compressed video to have identical

analysis result as the original video. Instead, is maintains the original

information and replicates noise such that the error introduced by com-

pression is statistically indistinguishable from that introduced by exist-

ing noise. This is verified by run multiple different statistical analyzes

on the original and compressed videos. For the case of analysis of

bead-tracking results, this enables a reduction in the number of fore-

ground pixels compared to the prior method, which enables even larger

compression ratios without detectable changes in analysis.

The video compression method described in this article and in our

earlier work can be characterized as region-of-interest (ROI) based meth-

ods. Previous ROI video encoding methods have been explored in Grois

and Hadar (2012), Liu, Li, and Soh (2008), Van Leuven, Van Schevensteen,

Dams, and Schelkens (2008). One application of ROI video coding to face

detection and tracking is discussed in Menser and Brunig (2000). Applica-

tion to aerial videos is introduced in Meuel, Munderloh, and Ostermann

(2011). Chao et al. discussed the ROI video coding for preserving com-

puter vision visual features in Chao and Steinbach (2011, 2012), Chao,

Chen, and Steinbach (2013). To our knowledge, there is no work done in

exploring the use of ROI video coding for microscopy video analysis.

Section 2 describes our analysis-aware compression technique.

Section 3 explains the quality measurement being used. Section 4

describes the experiments and discusses the result. Section 5 concludes

and talks about future work.

2 | MATERIALS AND METHODS

The goal of our analysis aware microscopy video compression method

is to have the compressed video retain all the information required for

analysis. To achieve this, the pixels that contain the useful information

need to be detected in every video frame.

The basic analysis-aware compression process is illustrated in Fig-

ure 1. The basic form of our new method and our previous method

both apply a two-step approach. (a) In the first (segmentation) stage,

the analysis-critical regions in every frame in the video are detected.

The methods both use an approach based on correlation and mathe-

matical morphology to determine the important part of the video in a

domain- and analysis-independent manner. Every pixel in every frame

is labeled as either foreground or background. This result is stored in a

binary map. (b) After the segmentation stage, the binary map is sent to

a compression routine. The compression integrates the segmentation

result in its encoding process so that for encoding setting the given

fixed resource is allocated in a way to ensure that information in the

analysis-critical region is well preserved. For this stage of the new algo-

rithm, we designed and evaluated two different variations. They are

detailed in Section 2.2. After the compression is completed, the result-

ing compressed video has a much smaller size, and it is still useful for

analysis. The extended form of our new algorithm includes a third

stage: (c) The compression may still introduce changes into the analysis

result. To address this problem, we designed a postprocessing stage to

refine the compressed video. The postprocessing stage makes use of

the noise statistics in the video and refines the video by reproducing

the noise that matches the video system characteristics as explained in

Section 2.3.

2.1 | Segmentation stage

The goal of segmentation is to accurately detect the regions of pix-

els in a microscopy video frame that might affect analysis. The

analysis-independent method for this task made use of the point-

spread function to remove regions containing only noise as

described in our previous work (Shao et al., 2015) and detailed

below. That used correlation followed by the mathematical morphol-

ogy “open” operation (erosion followed by dilation) to clean up small

false positives and then additional dilation to expand foreground

region to expand the correlation-based segmentation result. This

increased dilation (shown in Figure 2) provided a conservative estima-

tion of foreground regions to provide an (analysis-method-dependent)

region increase to ensure identical results. In the new method, the

expanded region is not required, so the additional dilation is not per-

formed—resulting in a much smaller foreground region and greater

compression.

The correlation-based segmentation for detecting moving objects

in microscopy video is the same in both the earlier and new method. It

makes use of the effect Point Spread Function (PSF) on an image.

Because of the PSF, every pixel is blended slightly with its neighboring

pixels. This means that any moving image feature will have a correlated

impact on a region of pixels rather than only a single pixel. This does

not hold for shot noise and electronic noise, which scale with image

brightness but are uncorrelated between pixels. To get a foreground

score for every pixel, we compute the Pearson’s correlation score

between it and its neighbors:
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In the formula, xj is the pixel intensity value for the center pixel at

the jth frame, �x is the mean pixel intensity value of the center pixel

over a time interval, yij is the pixel intensity value for the neighbor pixel

at jth frame, and �yi is the mean for the neighbor.

We compute this value for all eight neighboring pixels for each

pixel. We then compute the maximum of all neighbor scores and use a

threshold on this to determine which pixels are in the foreground. The

threshold was determined in our earlier study by running multiple

passes of bead tracking on the compressed video has the same tracking

result as the uncompressed video but it can also be determined for a

system with known sensor characteristics based on a likelihood thresh-

old based on the system’s noise characteristics. Once determined, this

threshold can be transferred to videos taken with similar experiment

setups. After every pixel has a score assigned to it, all pixels whose

score are above the threshold and are marked as potential foreground

pixels in a binary map. This threshold is set to a liberal value to avoid

losing actual features, with the result that the map contains many small

false-positive pixel groups whose size is smaller than the PSF for a

given microscope. The PSF would spread actual features over larger

areas, so we remove these false positives using the mathematical

erosion “open” operation. Figure 2 shows one example of the test

video frame image and the result binary map cleaned up by erosion.

The resulting cleaned binary map guides compression.

2.2 | Compression stage

For the compression stage, the goal is to make use of the segmentation

result to encode the video data so that information in the analysis-

critical regions is preserved in a manner that does not affect analysis.

There are many options for applying existing well-developed video

codecs and integrating the analysis-critical map signals to compress the

video data. In developing our system, we explored two paths. The first

approach (used both in the earlier work and the new method) proc-

esses the video frames by averaging background pixel values over time

and then losslessly compressed the processed video frames using a

standard algorithm. The preprocessed video has many pixel locations

with constant value over time, which can be efficiently encoded to pro-

vide high compression. Tests were done to compare four standard

compression techniques and software: bzip2, jpeg2000, H.264, and

H.265. The result showed that the three modern compression routines

all give a similar good compression with our processed video frames.

From these four methods, H.265 and H.264 achieve the smallest two

compressed video file size based on our data set. H.265 is 4% smaller

compressed video size than H.264 but the encoding speed of H.265

FIGURE 1 Overall analysis-aware compression process

FIGURE 2 Mathematical morphology portions of the original algorithm: (a) a sub region of the first frame in the original video; (b) the
correlation-based segmentation result without refinement; (c) the segmentation result after erosion refinement; (d) the segmentation result
after erosion and dilation refinement. Some foreground regions in (d) are due to the other beads that move into this region in later frames
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was much slower than other three techniques. Therefore, we chose to

use H.264 in our algorithm implementations and experiments. The

results should apply to any lossless video compressor.

In an extension of the new method, we also evaluated replacing

the background averaging with an approach that uses a combination

of lossless and lossy compression. This approach works for block-

based prediction-residual compression approaches. Our implementa-

tion used H.264. In H.264, the motion estimation unit is based on

16x16 pixel patch “macroblock.” The pixel data for each macroblock

is transformed into the frequency domain. Data reduction is

achieved by reducing the information in the high-frequency compo-

nents in every macroblock. Specifically, information reduction is

done by quantization that collapses a range of close values into one.

Quantization level is mostly based on the given bandwidth in com-

pression and it is generally a global property across blocks. But in

our compression, we do not need high quality for blocks that repre-

sent background pixels. Therefore, our approach assigns different

quantization levels to each block based on the segmentation result.

We denote qp as the controlled value in quantization. A higher qp

results in a wider range of values to be suppressed into one value,

which results in shorter encoded bit length and lower video quality.

As shown in Figure 3, if in one block there are one or more pixels

that are classified as foreground in the binary map, we use a better

setting (qp50); otherwise, we assign a worse setting (qp551) to

the block. This removes the need to calculate running averages

across frames at the expense of variable-quantization encoding.

We also studied combining the two approaches: averaging the

backgrounds and using customized qp assignment in compression.

However, the combination yielded larger compressed video sizes than

either technique applied by itself. This may be because the artificial

edges introduced by the first stage are not usually well aligned with the

macroblock boundaries, or it is not well aligned with the prediction

model inside H.264.

2.3 | Postprocessing stage

By averaging the background pixels over time (V1), the compression is

filtering out noise in the original video signal, producing an output

video that has less noise than the input video. This modifies the results

of analysis routines whose kernels reach beyond the foreground pixels,

such as the symmetry-based tracking kernels uses in our analysis. This

can produce more accurate tracking on the compressed video than the

original. While more accurate tracking could be considered better, it is

also statistically different from the results of tracking in uncompressed

video. For cases where different regions of the video have different

background fractions, this can also produce track-to-track variations in

the results. Especially for analysis that looks at random motion distribu-

tions (like the mean-squared displacement calculations performed by

our collaborators), this means that analysis on compressed video is dif-

ferent from analysis on uncompressed video. In these cases, the loss of

noise in the reconstructed video is a problem.

There are two ways to address this problem. The original method

expanding the foreground regions based on knowledge about the spa-

tial extent of the analysis kernels (Shao et al., 2015). The new approach

estimates the distribution of background noise in the original video and

adds synthesized noise into the compressed video during decompres-

sion/analysis. This has the benefit of being independent of the radius

of the kernels for analysis performed on the video. This process is the

postprocessing stage of our method. During analysis, noise is generated

and added back into the video in an online fashion. To avoid a per-pixel

storage cost, the known characteristics of noise in optical microscopy

systems can be used to model the entire image with only two

parameters.

N 0;rð Þ1 P kð Þ (2)

In estimating the noise parameters, we model noise value probabil-

ity distribution as a Poisson1Gaussian distribution described in Eq. 2.

By assuming a large sample size, one can further simplify the distribu-

tion (speeding reconstruction calculations) into a single Gaussian distri-

bution with nonzero mean. The only parameters are the mean and

variance of the distribution. To obtain the parameters for the two dis-

tributions (signal and noise), we used k-means clustering method. We

observe that all background pixel intensity values over time in a micros-

copy video have similar mean values and variances. And, the fore-

ground pixel intensity values over time tends to have diverged mean

and variance statistics. Hence, we can apply k-means clustering method

with k equals 2 to find the group for background pixels. By finding the

two clusters of the pixel intensity over time points in the mean and var-

iances space, we take the cluster with lower mean and variance and

use its center as the mean-variance of the noise distribution. One

FIGURE 3 Left to right: (a) the starting position of a bead in a video and its moving trajectory; (b) the resulting binary foreground/
background map; (c) illustration of the macroblocks that covers the frame; (d) the resulting binary macroblock foreground/background
labeling map
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sample plot of the pixel intensity over time’s mean vs. variance plot is

shown in Figure 4 where point A is the chosen cluster center.

Because standard video quality metrics such as PSNR and SSIM do

not correlate well with analysis such as object tracking (Korshunov &

Ooi, 2011). We seek a better metric for evaluation. In Shao et al. (2015),

the quality of the video was determined by running the same tracking

analysis on the video, and only the video with output exactly matching

the original video’s analysis result passed the validation. For our new

work, we consider the fact that analysis results on the original video are

affected by noise captured as part of the original video. Therefore, they

represent only one of a set of possible analysis results, and re-taking

new uncompressed video of the same specimen would produce slightly

different results. Therefore, the compressed video’s analysis does not

have to exactly match that on that particular video, but it should be

drawn from a distribution that matches those from multiple runs on the

same specimen. We propose robust statistically-based video quality

measurements based on the values derived from sets of analysis results.

This statistical approach can be used with any analysis. We dem-

onstrate it using mean square displacement (MSD) curves that are

derived from bead tracking results. An MSD value is calculated by aver-

aging the squared displacement over movement measured using a fixed

time window (s). A sequence of MSD values with increasing time win-

dows contains information about the type of cell motion. By character-

izing at the shape of the MSD vs. s curve, characteristics of the

specimen (diffusion coefficient, membrane stiffness) can be classified

(Monnier et al., 2012).

In our experiment, we converted the tracking trajectory result into a

sequence of MSD values with different time windows. The quality of the

video is determined based on the result of the quantitative tests on these

MSD values compared to the MSD values from tracking in the original

uncompressed video. We would like to verify that the error introduced

by the compression matches that introduced by existing noise such that

the two set of measurements are statistically indistinguishable.

2.4 | Quantitative tests

Because we judge the quality of a compressed video by comparing its

error with that introduced by noise in the original video, the relative

distributions should be considered. To provide confidence values, a

quantitative approach in preferred. In testing the performance of our

methods, we applied two experiments: the two-sample Kolmogorov-

Smirnov (KS) test and Kullback-Leibler (K-L) divergence computation.

2.4.1 | KS test

In our experiment, the goal is to show that the population of MSD sam-

ples from the compressed video group is not different from the popula-

tion of the samples from the uncompressed video group. This can be

verified using the KS test, which is a well-known technique for testing

and giving the confidence level that two groups of values drawn from

two continuous random distributions are actually drawn from the same

distribution. Unlike the t-test, which mainly tests the difference be two

populations’ means, the KS test takes the shape of the distribution into

account and finds the largest vertical distance between two kernel den-

sity plots.

2.4.2 | K-L divergence

Computing a K-L divergence can also compare two samples of MSD

values from two unknown distributions. K-L divergence is a concept in

information theory that measures the difference between two proba-

bility distributions. It can be understood as the information lost when

probability distributions Q is used to approximated probability distribu-

tion P. In our experiment, P is the sampled population of the MSD val-

ues for the original video and Q is the sampled population of the MSD

values for a compressed video. The measurement is nonsymmetric:

KL-div(P, Q) is generally different from KL-div(Q, P).

3 | RESULTS

We performed two types of experiments to evaluate our new methods.

The goal is to compare the new statistically-indistinguishable analysis-

aware video compression method against the standard video compres-

sion technique H.264. We included both variations of the analysis-aware

video compression method (V1 from (Shao et al., 2015) and V2 from this

article, using per-pixel temporal averaging) in the comparisons, and per-

formed the comparisons for each with and without the noise-addition

postprocessing. Both synthetic microscopy video data and real micros-

copy video data are used in the experiments.

For each compression technique, we compare the performance of

different compression methods under different bandwidth settings

(compression ratios). We ran the tests with various configurations to

generate different compressed video sizes. We then plotted the video

quality evaluation results versus video data sizes. The experiments on

synthetic data and real data are discussed separately in the next two

subsections.

3.1 | Experiment on synthetic data

The overall experiment flow on synthetic data is illustrated in Figure 5.

We wrote a program to generate synthetic microscopy video frames.

This data generating process is composed of several stages. First, we

use a program to simulate bead trajectories with Gaussian random

FIGURE 4 Mean vs. variation intensity plot with centers of the
two-means cluster
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walks. In this experiment, we generated 10 bead trajectories. The data

was stored as a list of x-y pairs, describing the sub-pixel bead positions

on every frame in the video. For an 1,800-frame video with 10 beads,

we had 10 lists with length 1,800. With the bead trajectory data, we

generated 10 videos that contain beads. All ten videos share the same

bead trajectories.

In the second stage, for each bead position in every frame, we gen-

erate a 2D Gaussian blob with predetermined mean intensity and

standard deviation values. We place it so that it is centered at the given

sub-pixel x-y location based on the trajectory data list. The result is a

“clean” video without background noise.

The next step is to add per-pixel noise into the video using Eq. 2.

We generated the final pixel intensity values with one Gaussian plus

Poisson distribution with k equals to the pixel intensity value and r

equals to 0.01. The values are selected such at the resulting video has

the similar characteristic as a real microscopy video. Therefore, in every

video, the background and foreground pixels values differ, but they are

samples from the same distribution.

This results in a set of 10 noisy videos. They each share the same

bead trajectory, but they have different noise. Every video contains 10

beads. Every video has 1,800 frames. Figure 6a shows 1 frame in one

of the 10 videos.

We tested the compression methods with the noisy videos from

the data generation process. For every video, we first identify the

foreground using correlation-based segmentation followed by math-

ematical morphology. The dilation operator size in the refinement is

set to 5 pixels, which is smaller than the value we used in our previ-

ous analysis-preserving compression work. This setting does not

ensure the exact same analysis results as the original video. We gen-

erate a binary map from the first step. Then we process the video

with five approaches to generate 5 sets of compressed videos: (a)

based on the binary map, we average the background in the video

and leave the foreground unchanged. Then we compress the video

using H.264, (b) Based on the binary map, we apply a customized

H.264 compression by applying a low-quality setting (qp551) for

the background pixel blocks, and applying a high quality setting

(lower qp) for the foreground pixel blocks, (c) We further add syn-

thesized noise into the resulting compressed video from (a). (d) We

further add synthesized noise into the resulting compressed video

from (b). To compare our method with the standard H.264 compres-

sion, in method (e) we directly compress the original video (ignoring

the binary map) using H.264.

To compare the performance of the five compression methods at

different quality levels, we adjust the parameters to generate a set of

FIGURE 5 Flow chart of the experiment steps with synthetic data

FIGURE 6 Sample video frames, left: synthetic video, right: real video
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compressed videos with different sizes for each compression method.

In methods (a) and (c) we increase the dilation operator size from

5 pixels to a larger value, which produces a larger foreground region

(and thus less compression). In methods (b) and (d) we used a list of qp

values when compressing the foreground blocks in H.264 compression.

In method (e) we used a list of qp values for H.264 compression so

that we have different sized videos. We call methods (a) and (c)

analysis-aware compression variation 1 (V1). We call (b) and (d)

analysis-aware compression variation 2 (V2).

By including analysis-aware compression variation 1 in the experi-

ment, we also include a generalization of the method described in

(Shao et al., 2015). By increasing morphology dilation size in the refine-

ment stage described in (Shao et al., 2015), we eventually reach a large

enough dilation size that makes the analysis result the same as the one

for original video.

We plot the sizes of compressed videos from various compression

methods so that we can compare their relative effectiveness at a given

compressed size. For each method, we ran the compression with all 10

videos to generate a population of compressed videos. The compressed

video size for the videos after postprocessing is considered the same

as before post processing because the post processing can be per-

formed during reconstruction using the compressed video before post-

processing as input.

We analyzed the tracking of beads using video spot tracker

(CISMM, 2015). We applied the tracking on the original uncompressed

video and all compressed videos: before post processing (a and b) and

after post processing (c and d). We then computed the MSD for the

tracking results. Figure 7 shows the relationship between MSD values

and video compression ratios. The MSD values were plotted as a multi-

ple of the MSD values for original video (1.0 means the MSD values

are identical to the ones from original videos). Each curve represents

the mean MSD values among 10 copies of videos with the same fore-

ground and different instances of sampled noise values from the same

noise distribution.

The result suggests that two variations of our compression method

both generate a higher quality compressed video because the points

on the curves are all close to one (in the range between 0.98 and 1.04)

when the compression ratio is less than 287 whereas standard H.264

yields a curve far away from 1.0 (0.82) given the same compression

ratio. The curves for the videos after postprocessing are closer to the

1.0 horizontal curve, indicating that postprocessing of adding back-

noise improves the video quality regarding analysis. V2 with postpro-

cessing is very close to the original result, indicating that it may be

indistinguishable from it.

3.1.1 | KS test

To further probe for potential differences between the original and

compressed analysis, we performed the KS test on the MSD values. In

this experiment, we used one bead’s MSD values across 10 versions of

the videos that share the same foreground content. After that, we
FIGURE 7 Scaled MSD values vs. compression ratio, for five
groups of synthetic videos

FIGURE 8 (a) KS test p values vs. compression ratio. The
horizontal line shows the KS test p score 0.95. (b) K-L divergence
values vs. compression ratio, for five groups of synthetic videos.
The vertical line in every plot shows the compression ratio for the
previous analysis-preserving method
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selected a fixed window size. Figure 8a shows the p values output

from KS test for MSD values on videos compressed using our compres-

sion approach variation 1, our compression approach variation 2, and

the standard H.264 compression. The curves plot p value vs. compres-

sion ratio. The horizontal line indicates the test decision threshold. For

all p values above the line, the null hypothesis is not rejected, which

means that there is no strong evidence that the MSD values obtained

from compressed videos are sampled from a different population than

those from the MSD values obtained from the original video (that is to

say that they are statistically indistinguishable). The maximum compres-

sion ratio achieved with p values above the p5 .95 threshold using our

method is shown in Table 1.

The KS test for standard H.264 compressed videos always rejects

the null hypothesis, indicating that the distributions are statistically dis-

tinguishable. For our approach before the postprocessing the curve

sometimes goes above the threshold, but it also falls below the thresh-

old as compression ratio increases. For the video compressed with our

approach after postprocessing, the curves are always above the thresh-

old until it reaches a high compression ratio of 3580.

3.1.2 | K-L divergence

We also computed K-L divergence values on the same data. The result

is shown in Figure 8b. A lower K-L divergence value suggests a smaller

distance between the compressed video’s MSD value population and

the original video MSD value population.

In this experiment, our compression approach variation 2 outper-

formed standard H.264 up until a compression ratio of 1450.

3.2 | Experiment on real data

We also performed experiments on videos from real experiments. For

real data, it is impossible to get the true bead trajectory and generate

TABLE 1 Achieved compression ratios for applying analysis-aware methods and lossless compression method on synthetic data and real data
and maintain KS test p-score larger than 0.95 in the resulting video

Synthetic data (v1) Synthetic data (v2) Synthetic data (lossless) Real data (v1) Real data (v2) Real data (lossless)

32.9 39.3 18.4 3580 23.1 9.7

For synthetic data, an improvement of around a factor of 2 was achieved above the earlier lossless method. For real data, which had more noise, the
improvement was around a factor of 350.

FIGURE 9 Flow chart of the experiment steps with real data

FIGURE 10 Scaled MSD values vs. compression ratio, for five
groups of real videos
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multiple copies of the same bead trajectory with different background

noise. We handled this by dividing each video into 10 segments and

performing tracking on each segment to produce a population of esti-

mates. It is assumed that there is no significant background noise prop-

erty change across the videos in a single video from the test set. The

experiment process is illustrated in Figure 9.

The scaled MSD values for various compression methods vs.

video compression ratio plot for real video data is given in Figure

10. For real data, a change in dilation size in our method V1 makes

the compression ratio jump from 12 to �3,000. It does not produce

compressed video with compression ratio between this range. The

plot shows that our compression approach also performs better

than H.264 compression for compression ratios less than 3,0003.

Our method generates result values near 1 (in the range between

0.95 and 1.06) for compression ratio less than 184 whereas

standard H.264 compression generates values larger than 1.21 for

the same compression ratio.

Figure 11 shows the MSD values from multiple compression meth-

ods compared using the KS test p-value and the K-L divergence value.

For this data set, K-L divergence shows that all variations of our

method outperform standard H.264. In the KS test, the p values for the

videos compressed by standard H.264 are always below the p5 .95

threshold, while our compression method variation 2 remains above

the p5 .99 threshold through very large compression ratios (>3,0003).

3.3 | Discussion: Other statistical tests

In additional to KS test and K-L divergence, we conducted further

experiments with five other statistical test methods: mean test, var-

iance F-test, Van der Waerden test, Two One-Side Test (TOST) and

B-test. B-test is a maximum mean discrepancy kernel two-sample test.

The goal of this experiment is to further examine the idea of evaluating

video quality with statistical tests: a video with good quality under eval-

uations with KS test and K-L divergence is expected to also give con-

sistent outcomes under other types of statistical tests.

FIGURE 11 (a) KS test p values vs. compression ratio. The two
horizontal lines showing the KS test p score 0.95 and 0.99,
respectively. (b) K-L divergence values vs. compression ratio, for
five groups of real videos. The vertical line in every plot shows the
compression ratio for the previous analysis-preserving method

FIGURE 12 Q-Q plots. (a): less compressed data vs original data;
(b): more compressed data vs original data
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In all tests, we used three data vectors. Each vector contains 10

numbers. The first data vector v1 is the average MSD analysis result

from 10 compressed videos using analysis-aware compression method

V2 with post processing, in a low video quality setting. The second data

vector v2 is from 10 compressed videos using analysis-aware compres-

sion method V2 with post processing, in a high video quality setting. The

third data vector v0 is from the 10 videos before compression.

First, we compared v0 with v1, v0 with v2 using two Q-Q plots

shown in Figure 12. By comparing the Q-Q plot on v0 and v1 (Figure

12b) and the Q-Q plot on v0 and v2 (Figure 12a), we can conclude that

a compressed video with a higher quality setting has the property

closer to the original video.

Second, we apply mean test, variance F-test, Van der Waerden

test, TOST and B-test on the test data. We ran 5 tests between [v0,

v1] (Table 2, Column 2 from left) and [v0, v2] (Table 2, Column 3 from

left). The resulting p values are listed in Table 2. In the experiment,

TOST is set with lower limit 20.01, higher limit 0.01, column B is

between v1 and v0, column C is between v2 and v0. We also include

the result from KS test.

The table suggests that a compression with a high-quality setting

(v2 vs v0) results in a higher p value, except the p1 value from TOST. In

KS test, mean test and B-test, the p value of testing v1 and v0 is less

than 0.05 (0.031, 0.0145, 0.0432). While p value of testing v2 and v0 is

much higher (1, 0.95, and 0.5).

As a conclusion, our idea of measuring video quality is very generic

since it can be applied with a wide variety of 2-sample statistical tests

with consistent results.

4 | CONCLUSION

We introduce a compression method that preserves analysis-critical

information in real microscopy video even at extremely high compres-

sion ratios for some cases. The method compresses automatically-

identified nonrelevant regions at relatively low quality to yield a better

compression ratio than standard compression. We show that the

method preserves scientific analysis by running statistical tests on it;

the resulting probability distribution of analysis results is not statisti-

cally distinguishable from the analysis result probability distribution

from the original video.

We performed video quality evaluation based on MSD values from

tracking diffusing beads. The experiment result suggests that

comparing against standard video compression technique H.264, for

most compression ratio values, our method gives a better-quality video

in terms of the analysis results.

The method extends to other types of microscopy video analysis

besides object tracking. The statistical validation method can be modi-

fied to apply to other types of analysis. We evaluated quality based on

KS test and K-L divergence. If a different metric is desired, the statisti-

cal tests can be replaced with the new technique applied to the same

population of data.

The correlation-based segmentationmethod used in our compression

technique was verified by analysis of tracking in a fluorescence micros-

copy videos in our experiment. In Shao et al. (2015), we showed that this

segmentation method works for a variety of microscopy video types

including fluorescence video, bright field video, fast moving beads video

and cell video and associated analysis routines including segmentation.
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This article introduces an analysis-aware microscopy video compression method designed for

microscopy videos that are consumed by analysis algorithms. Our method can achieve 1,0003

compression on certain test microscopy videos.
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